Master of Engineering in Nuclear Engineering

Course

Title	Description	Credits
Nuclear and	Theory of radioactive decay processes, nuclear properties and	3 credits
Radiochemistry	structure, nuclear reactions, interactions of radiation with matter,	
	biological effects of radiation.	
Introduction to	Statistical description of systems composed of large numbers of	3 credits
Statistical	particles in the context of classical and quantum mechanics; basic	
Thermodynamics	concepts of probability theory and thermodynamics as they relate to	
	statistical mechanics.	
Nuclear Materials	Nuclear reactor materials: relationship between changes in material	3 credits
	properties and microstructural evolution of nuclear cladding and fuel	
	under irradiation.	
Radiological Safety	Ionizing radiation, biological effects, radiation measurement, dose	3 credits
	computational techniques, local and federal regulations, exposure	
	control.	
Radioactive Waste	Nature, sources, and control of radioactive wastes; theory and practice	3 credits
Control	of disposal processes.	
Design Principles of	Nuclear power cycles; heat removal problems; kinetic behavior of	3 credits
Reactor Systems	nuclear systems; material and structural design problems.	
Power Plant Simulation	Basic knowledge necessary for intelligent simulation and	3 credits
	interpretation of simulations of transients in nuclear power plants.	
Radiation and	Laboratory experience in radiation detection and measurement.	1 credits
Measurement Detection		
Lab	This course is required for students who do not have a baccalaureate	
	degree in nuclear engineering and have not fulfilled an equivalent course	
	requirement. Students who do not have an undergraduate degree in	
	nuclear engineering should consult with the Department of Mechanical	
	and Nuclear Engineering to determine if they need to complete this	
	course.	
Reactor Engineering	Thermal hydraulic fundamentals applied to power reactors, thermal	3 credits
	analysis of fuel elements and two-phase heat transfer in heated	
	channels.	

Reactor Core Thermal-	In-depth analysis of the reactor core thermal hydraulics;	3 credits
Hydraulics	computational methods and practical applications.	
Nuclear Reactor Kinetics	Analytical kinetics and dynamics modeling for reactivity-induced	3 credits
and Dynamics	transients; reactor accident kinetics methods for simple and complex	
	geometries; experimental methods.	
Nuclear Fuel	Nuclear fuel inventory determination and economic value through the	3 credits
Management	fuel cycle. Emphasis on calculational techniques in reactor,	
	optimization, and design.	
Neutron Transport	Derivation of Boltzmann equation for neutron transport; techniques of	3 credits
Theory	approximate and exact solution for the monoenergetic and spectrum	
	regenerating cases.	
Environmental	Degradation of materials performance when exposed to the	3 credits
Degradation of	combination of high temperature, neutron irradiation, and aggressive	
Materials in Nuclear	electrochemistry found in nuclear reactors.	
Power Plants		
Monte Carlo Methods	Fundamentals of the probability theory and statistics, analog and non-	3 credits
	analog Monte Carlo methods and their applications, random	
	processes, and numbers.	
Individual Studies –	Creative projects, including nonthesis research, which are supervised	3 credits
Professional Topics in	on an individual basis and which fall outside the scope of formal	
Nuclear Engineering	courses.	
Advanced Engineering	Concepts and techniques of analyses useful in evaluating engineering	3 credits
Economy	projects under deterministic and uncertain conditions.	
Heat Transfer	Thermal energy transfer mechanisms: conduction (steady, transient),	3 credits
	convection (internal, external), radiation; lumped parameter method;	
	heat exchangers; introduction to numerical methods.	
Finite Elements in	Computer modeling and fundamental analysis of solid, fluid, and heat	3 credits
Engineering	flow problems using existing computer codes.	
Heat Transfer—	Laminar and turbulent flow heat transfer in natural and forced	3 credits
Convection	convection systems.	
Foundations of Fluid	Second semester of core sequence in fluid mechanics; continuation of	3 credits
Mechanics II	boundry layers, stability, transition, turbulence, turbulent boundry	
	layers, turbulence models.	
Numerical Solutions	Application of finite difference methods to the study of potential and	3 credits
Applied to Heat Transfer	viscous flows and conduction and convection heat transfer	

and Fluid Mechanics		
Problems		
Simulation of	Introduces computational fundamentals, including digital logic;	3 credits
Mechanical Systems	programming language, basic numerical analysis and data processing,	
	as applied to mechanical simulation techniques.	