Master of Science in Mechanical Engineering

Courses (Choose 32 credits)

Title	Description	Credits
Thermodynamics of	Analysis and modeling of propulsion and power systems, including	3 credits
Propulsion and	combustion, compressible flow through nozzles, chemical equilibrium, and	
Power Systems	moist air systems.	
Principles of	Application of Newton's laws of motion and basic laws of thermodynamics	3 credits
Turbomachinery	to analysis of fluid flow in turbomachinery.	
Introduction to	Concepts related to laminar and turbulent premixed and nonpremixed	3 credits
Combustion	combustion with applications to propulsion and stationary systems.	
Engineering	Problem formulation, algorithms and computer solution of various	3 credits
Optimization	engineering optimization problems.	
Automatic Control	Dynamic analysis of systems involving automatic control of position,	3 credits
Systems	speed, power, flow, pressure, temperature, and other physical quantities.	
Finite Elements in	Computer modeling and fundamental analysis of solid, fluid, and heat flow	3 credits
Engineering	problems using existing computer codes.	
Introduction to	Techniques and formulations for computer-based kinematic and dynamic	3 credits
Computer-Aided	analyses of machines.	
Analysis of Machine		
Dynamics		
Heat Transfer —	One- and two-dimensional conduction heat transfer for steady state and	3 credits
Conduction	transient systems with varying boundary conditions.	
Heat Transfer —	Laminar and turbulent flow heat transfer in natural and forced convection	3 credits
Convection	systems.	
Heat Transfer —	Thermal radiation fundamentals; specular and diffuse systems;	3 credits
Radiation	differential and integral methods; numerical techniques; industrial	
	applications.	
Two-Phase Heat	Heat transfer processes involving evaporation, boiling, and condensation.	3 credits
Transfer		
Foundations of Fluid	First semester of core sequence in fluid mechanics; Navier-Stokes	3 credits
Mechanics I	equations, potential flow, low Re flow, laminar boundary layers.	
Foundations of Fluid	Second semester of core sequence in fluid mechanics; continuation of	3 credits
Mechanics II	boundary layers, stability, transition, turbulence, turbulent boundary	

	layers, turbulence models.	
Numerical Solutions	Application of finite difference methods to the study of potential and	3 credits
Applied to Heat	viscous flows and conduction and convection heat transfer.	
Transfer and Fluid		
Mechanics Problems		
Fundamentals of	Theoretical formulations and methods of solution of engineering problems	3 credits
Combustion	and physical/chemical processes in various propulsion systems.	
Turbulent and Two-	Fundamentals of chemically reacting turbulent flows in homogeneous	3 credits
Phase Combustion	systems including turbulent flames, spray combustion, ignition, reacting	
	boundary layers.	
Foundations of	Analytical methods are developed using the vector space approach for	3 credits
Engineering	solving control and estimation problems; examples from different	
Systems Analysis	engineering applications.	
Automatic Control	Advanced problems and techniques in the design of automatic control	3 credits
Systems	systems with emphasis on stability, controller design, and optimum	
	performance.	
Solid Mechanics	Introduction to continuum mechanics, variational methods, and finite	3 credits
	element formulations; application to bars, beams, cylinders, disks, and	
	plates.	
Simulation of	Introduces computational fundamentals, including digital logic;	3 credits
Mechanical Systems	programming language, basic numerical analysis and data processing, as	
	applied to mechanical simulation techniques.	
Colloquium	Continuing seminars that consist of a series of individual lectures by	1 credit
_	faculty, students, or outside speakers.	
Individual Studies	Creative projects, including nonthesis research, which are supervised on	1-3
	an individual basis and which fall outside the scope of formal courses.	credits