Prescribed Core Courses (9 credits)

Title	Description	Credits
Linear Systems:	Signals and systems representations, classifications, and analysis using;	3 credits
Time Domain and	difference and differential equations, Laplace transform, z-transform,	
Transform Analysis	Fourier series, FT, FFT, DFT.	
Probability,	Review of probability theory and random variables; mathematical	3 credits
Random Variables,	description of random signals; linear system response; Wiener, Kalman,	
and Stochastic	and other filtering.	
Processes		
Research Projects	Supervision of individual research projects leading to MS or MEng papers.	3 credits
	Written and oral reports are required.	

Electives (21 credits)

Title	Description	Credits
Communication	Probability fundamentals, digital/analog modulation/demodulation,	3 credits
Systems II	systems noise analysis, SNR and BER calculations, optimal receiver design	
	concepts, introductory information theory.	
Power Systems	Fundamentals, power transformers, transmission lines, power flow, fault	3 credits
Analysis I	calculations, power system controls.	
Engineering	Electromagnetic field theory fundamentals with application to	3 credits
Electromagnetics	transmission lines, waveguides, cavities, antennas, radar, and radio	
	propagation.	
Topics in Digital	Parametric modeling, spectral estimation, efficient transforms and	3 credits
Signal Processing	convolution algorithms, multirate processing, and selected applications	
	involving non-linear and time-variant filters.	
Linear Control	Continuous and discrete-time linear control systems; state variable	3 credits
Systems	models; analytical design for deterministic and random inputs; time-	
	varying systems and stability.	
Optimal Control	Variational methods in control system design; classical calculus of	3 credits
	variations, dynamic programming, maximum principle; optimal digital	
	control systems; state estimation.	
Power System	Steady-state and dynamic model of synchronous machines, excitation	3 credits
Control and	systems, unit commitment, control of generation, optimal power flow.	
Operation		