Master of Professional Studies in Data Analytics

Core Curriculum (9 credits)

Title	Description	Credits
Foundations of	Survey course on the key topics in predictive analytics.	3 credits
Predictive Analytics		
Data Mining	Practical benefits of data mining will be presented; data warehousing, data	3 credits
	cubes, and underlying algorithms used by data mining software.	
Applied Statistics	Descriptive statistics, hypothesis testing, power, estimation, confidence	3 credits
	intervals, regression, one- and 2-way ANOVA, Chi-square tests, diagnostics.	
	Prerequisite: one undergraduate course in statistics	

Prescribed Courses (9 credits)*)

Title	Description	Credits
Large-Scale	Examination of large-scale data storage technologies including NoSQL	3 credits
Database and	database systems for loosely-structured data, and warehouses for	
Warehouse	dimensional data.	
Data-Driven	Application and interpretation of analytics for real-life decision making.	3 credits
Decision Making		
Database Design	The requirements capture, design, and development of relational database	3 credits
Concepts	applications; analysis of business requirements and development of	
	appropriate database systems.	

Elective (Choose 9 credits)*

Title	Description	Credits
Data Collection and	Tools and techniques required for data collection and computational	3 credits
Cleaning	procedures to automatically or semi-automatically identify and eliminate	
	errors in large datasets.	
Data Visualization	This course provides a foundation in the principles, concepts, techniques,	3 credits
	and tools for visualizing large data sets.	

Enterprise Analytics	The course examines business intelligence in the era of big data. Emphasis	3 credits
Strategies	is on the successful implementation of big data in large and small	
	corporations that deliver extraordinary results.	
Applied Data Mining	Functional overviews of algorithms used in data mining will be presented	3 credits
	and contemporary data mining software used to conduct a project.	
Statistical Analysis	Introduction, intermediate, and advanced topics in SAS.	3 credits
System		
Programming	Prerequisite: 3 credits in statistics	
Regression Methods	Analysis of research data through simple and multiple regression and	3 credits
	correlation; polynomial models; indicator variables; step-wise, piece-wise,	
	and logistic regression.	
Analysis of Variance	Analysis of variance and design concepts; factorial, nested, and unbalanced	3 credits
and Design of	data; ANCOVA; blocked, Latin square, split-plot, repeated measures	
Experiments	designs.	
Genetic Algorithms	Application of genetic algorithms to problems in engineering and science	3 credits
	including combinatorial optimization, multi-criteria optimization, biology,	
	chemistry, and neural networks.	
	Prerequisite: completion of a course in data structures and algorithms or	
	with permission from the program	
Technical Project	Analysis and construction of project plans for the development of complex	3 credits
Management	engineering products taken from a variety of problem domains.	
Decision and Risk	Analysis of engineering decisions under uncertainty; problem	3 credits
Analysis in	identification, formulation, judgment, resolution; mitigation, risk analysis,	
Engineering	quantification, and management.	

Capstone Experience (3 credits)

Title	Description	Credits
Design and	Design and implement data science and analytics systems using	3 credits
Implementation of	contemporary tools and techniques. Choice of project topic mutually	
Analytics Systems	determined by student and instructor. Students must complete all core	
	and required courses before enrolling.	